IPH A

Test Report

Document No.	00782-21-0416_DRAFT Copy No. 1 Number of pages 42
Apparatus	Three pole switch-disconnector in horizontal design
Designation	TES-00/800 TES-1/800
Serial Number	Test samples
Manufacturer	THS Componentes Elétricos Ltda Rua Irineu Dias da Rosa, 25 Chac 3 Marias - Sorocaba - SP CEP: 18105-310 - BRAZIL
Client	THS Componentes Elétricos Ltda Rua Irineu Dias da Rosa, 25 Chac 3 Marias - Sorocaba - SP CEP: 18105-310 - BRAZIL
Date(s) of test(s)	06 to 11 August 2021
Tested by	IPH Institut "Prüffeld für elektrische Hochleistungstechnik" GmbH Landsberger Allee 378A 12681 Berlin GERMANY
	RAFailonon
The apparatus, con	structed in accordance with the description, drawings and photographs
IEC 60947-3: 2020	
The results are documented The document applies only t with the Manufacturer.	in this test report. The ratings assigned by the Manufacturer are listed on the ratings page. o the apparatus tested. The responsibility for conformity of any apparatus having the same designations with that tested rests
Dete	
Date	lest Engineer in charge Approved by
Partial reproduction of this of The authenticity of this docu	locument is permitted only with the written permissions from CESI Group.

Trust the Power of Experience

Notes

STL-Member

CESI Group members are founder members of the SHORT-CIRCUIT TESTING LIAISON (STL) which has been established in 1969. STL is a forum for voluntary international cooperation of testing organizations.

CESI Group Test Documents description

Type Test Certificate of

Issued for type tests of high voltage products (> 1 kV_{ac}; > 1,5 kV_{dc}), which have successfully been carried out in full compliance with the relevant specifications or standards and STL Guides valid at the time of the test. The Type Test Certificate consists of documents unequivocally identifying the test object and describes all conditions under which the tests were conducted. It gives evidence of the unobjectionable behavior of the test object during the tests in line with the normative documents applied as well as of the results of successful testing.

Test Certificate of (complete / selected) Type Tests

Issued if type tests of low voltage products (< 1 kV_{ac} ; < 1,5 kV_{dc}) requested by the relevant product standard were passed. For these tests the equipment under test must be clearly identified by technical description, drawings, and additional specifications.

Certificate of Design Verification

Issued for passed design verification tests according to IEC 61439. For these tests the equipment under test must be clearly identified by technical description, drawings, and additional specifications.

Type Test Report

Issued for high and low voltage products if parts of selected type tests have been passed; those shall be carried out in full compliance with the relevant standards but (for high voltage products) do not fulfill all STL requirements for issuing a Type Test Certificate. For these tests the equipment under test must be clearly identified by technical description, drawings, and additional specifications.

Test Report

Issued for all other tests on high and low voltage products which have been carried out according to specifications, standards and/or client instructions

On-Site Test Record

Issued as a record of results acquired during the on-site tests / measurements

Test Award

Can be additionally issued for all named types of test documents above if the tests to be referenced were passed

SHEET 3

Description		Rating	Verified
Rated operational voltage	U_{e}	800 V	
Rated insulation voltage	Ui	1000 V	х
Rated impulse withstand voltage	\mathbf{U}_{imp}	8 kV	х
Rated operational current TES-00/800 TES-1/800	l _e	160 A 250 A	x x
Conventional free air thermal current TES-00/800 TES-1/800	l _{th}	160 A 250 A	x x
Rated frequency		50 Hz	
Utilization category		AC-21B	х
Degree of pollution		3	
Material group		IIIa	
Overvoltage category			

Ratings and characteristics assigned by the manufacturer and proven by test

The ratings of the test object marked with X and related to the scope of test(s) performed have been proved.

Cont	tents	Sheet
1.	Present at the test	5
2.	Test performed	5
3.	Identity of the test object	6
3.1	Technical data and characteristics	6
3.2	Identity documents	6
4.	Test sequence I: General performance characteristics	7
4.1	Temperature-rise	7
4.2	Dielectric properties	
4.3	Making and breaking capacities	14
4.4	Dielectric verification	
4.5	Leakage current	
4.6	Temperature-rise verification	
4.7	Strength of actuator mechanism	
5.	Photos	
6.	Oscillograms	
7.	Drawings	
	Forintornalis	

Distribution

Copy No. 1 in English:

Copy No. 1

THS Componentes Elétricos Ltda

Present at the test 1.

Mr. Jens Haring IPH test engineer in charge

2. Test performed

Test sequence I:

- General performance characteristics
- Temperature-rise
- Dielectric properties
- profination only - Making and breaking capacities
- Dielectric verification
- Leakage current
- Temperature-rise verification
- Strength of actuator mechanism

3. Identity of the test object

3.1 Technical data and characteristics

The technical data and characteristics of the test object are defined by the following parameters and specified by the client.

Test object: Type:	Switch-disconnector TES-00/800 TES-1/800				
Manufacturer: Serial No.: Year of manufacture:	THS Componentes Elétricos Ltda Test samples 2021				
Characteristics:	Three pole switch-disconnector in ho	orizontal design			
	Dimension H x W x D TES-00/800 TES-1/800	172 mm x 106 mm x 88 mm 294 mm x 210 mm x 138 mm			
	Terminal torque TES-00/800 TES-1/800	15 Nm 25 Nm			
Material:	Material of base	Polyamide 6.6, 20% glass fiber reinforced, flame retardant rated V0 acc. to UL-94			
	Material of cover	Polyamide 6.6, flame retardant rated V0 acc. to UL-94			
	Material of actuator	Polyamide 6.6, 20% glass fiber reinforced, flame retardant rated V0 acc. to UL-94			
	Material of terminals	Silver plated copper C11000			
	Material of compression spring	Hard drawn carbon steel			

3.2 Identity documents

The manufacturer confirms that the test object has been manufactured in compliance with the drawings given in this document. IPH did not verify this compliance in detail.

The identity of the test object is fixed by the following drawings and data submitted by the client:

Name of drawing	Drawing No.	Date of drawing	Author	Notes
Chave NH00/000		16/08/21	THS	Sheet 40
Chave NH1		16/08/21	THS	Sheet 41
SECCIONADORA NH TES 800V - SOB CARGA			THS	Sheet 42

Entry of test object at IPH: 03 August 2021

4. Test sequence I: General performance characteristics

4.1 Temperature-rise

4.1.1 Test laboratory

Low-voltage test laboratory, test rooms 4 and 7

4.1.2 Normative document

IEC 60947-3: 2020, Sub-clause 9.3.4.2

4.1.3 Required test parameters

Test current TES-00/800: Test current TES-1/800: Test frequency: 160 A, three-phase 250 A, three-phase 50 Hz

4.1.4 Test arrangement

The test object was mounted, as specified by the manufacturer, in normal position of use.

All terminals were connected by 4-m flexible copper cables with a cross-section of 70 mm² for TES-00/800 and 120 mm² for TES-1/800.

The torque of the terminal screws was 15 Nm for TES-00/800 and 25 Nm for TES-1/800.

4.1.5 Test and measuring circuits

Measuring point Measured quantity		Measuring sensor		
1 - 5	Temperature	Cu/constantan thermocouples		
6	Test current L1 Rogowski coil, integrator			
7	Test current L2	Rogowski coil, integrator		
8	Test current L3	Rogowski coil, integrator		
Measuring instruments: Measuring points 1 - 5: ALMEMO® 5690-2 XU Measuring points 6 - 8: Digital Display SPE				

4.1.6 Test results

4.1.6.1 TES-00/800

The temperature-rise test was carried out with THS NH00 fuse links (800V, 160A, gL/gG, 50kA, 12W).

Date of test:	10 August 2021
Test current:	161 A / 160 A / 160 A
Test frequency:	50 Hz

Condition of test object:	New
Ambient air:	25.7 °C

Meas. point⁄ Phase		Designation	Classification	Material	Final temperature measured	Final temperature rise	Temperature-rise limit permitted
					[°C]	[К]	[K]
	L1			-	83.3	57.6	
1	L2	Upper terminals	Terminal	Copper, silver-coated	92.8	67.1	70
	L3				76.3	50.6	
	L1				79.1	53.4	
2	L2	Lower terminals	Terminal	Copper, silver-coated	79.4	53.7	70
	L3				72.3	46.6	
3	-	Manual operating means	Manual actuator	Insulating material	36.7	11.0	25
4	-	Enclosure on the front side, intended to be touched but not hand hold	Exposed part	Insulating material	62.5	36.8	40
5	-	Enclosure, not touched during normal operation	Exposed part	Insulating material	73.5	47.8	50

The final temperature-rise values measured did not exceed the temperature-rise limits defined by IEC 60947-3, Sub-clause 8.2.2.

4.1.6.2 TES-1/800

The temperature-rise test was carried out with THS NH1 fuse links (800V, 250A, gL/gG, 50kA, 23W).

Date of test:	10 August 2021
Test current:	253 A / 251 A / 251 A
Test frequency:	50 Hz

Condition of test object:

Ambient air:

New 26.5 °C

Me poi Ph	eas. int⁄ ase	Designation	Classification	Material	Final temperature measured	Final temperature rise	Temperature-rise limit permitted	
					[°C]	[K]	[K]	
	L1			-	70.3	43.8		
1	L2	Upper terminals	Terminal	Copper, silver-coated	93.8	67.3	70	
	L3				71.8	45.3		
	L1				58.5	32.0		
2	L2	Lower terminals	Terminal	Copper, silver-coated	73.7	47.2	70	
	L3				63.2	36.7		
3	-	Manual operating means	Manual actuator	Insulating material	31.4	4.9	25	
4	-	Enclosure on the front side, intended to be touched but not hand hold	Exposed part	Insulating material	51.7	25.2	40	
5	-	Enclosure, not touched during normal operation	Exposed part	Insulating material	46.2	19.7	50	

The final temperature-rise values measured did not exceed the temperature-rise limits defined by IEC 60947-3, Sub-clause 8.2.2.

4.2 Dielectric properties

4.2.1 Test laboratory

Low-voltage test laboratory, test room 4

4.2.2 Normative document

IEC 60947-3: 2020, Sub-clause 9.3.4.3

4.2.3 Required test parameters

-	Verification of impulse withstand volta	ge	
	Lightning impulse voltage 1.2/50 μ s:	12.3 kV	Insulation of isolating distances
	Lightning impulse voltage 1.2/50 μ s:	9.8 kV	Phase-to-phase insulation and phase-to-earth insulation
	No. of tests:	5 each	0
	Polarity:	Positive and negative	e to earth
-	Power-frequency withstand verification	n of solid insulation	
	50 Hz AC test voltage:	2200 V	
	Duration of test: 60) s each	
-	Verification of creepage distances	401	
	Minimum creepage distance:	16 mm	(Degree of pollution 3)
-	Leakage current		
	Test voltage:	880 V (1.1 x U _e)	
	Test frequency:	50 Hz	

.....

4.2.4 Test arrangement

Actuators of insulating material and non-metallic enclosure intended to be touched were covered by a metal foil.

4.2.5 Test results

4.2.5.1 TES-00/800

• Verification of impulse withstand voltage and of power-frequency withstand of solid insulation

Date of test: 11 August 2021

Atmospheric conditions during test

Air temperature:	24.1 °C
Air pressure:	1013 mbar
Air humidity:	51 %

Voltage applied to	Earthed	Position of operation	Applied test voltage 1.2/50 μs	Results	Applied test voltage 50 Hz, 60 s	Results
			kV	Number of tests ⁄ disruptive discharges	N ^v	Disruptive discharges
All terminals of the main circuit	Enclosure / mounting plate	Close	± 9.8	5 each/0	2200	0
connected together	place	Open	± 9.8	5 each/0	2200	0
Each pole of the main	Other poles connected	Close	9.8	5 each/0	2200	0
	to enclosure	Open	± 9.8	5 each/0	2200	0
Line terminals connected together	Load terminals connected together	Open	± 12.3	5 each/0	2200	0

• Verification of creepage distances

The minimum creepage distance measured to Annex G is 27 mm. The required minimum creepage distance limit has been observed.

Leakage current

The leakage current of max. 8.8 μ A measured, was less than the permissible value of 2 mA.

4.2.5.2 TES-1/800

• Verification of impulse withstand voltage and of power-frequency withstand of solid insulation

Date of test: 11 August 2021

Atmospheric conditions during test

Air temperature:	24.1 °C
Air pressure:	1013 mbar
Air humidity:	51 %

Voltage applied to	Earthed	Position of operation	Applied test voltage 1.2/50 μs	Results	Applied test voltage 50 Hz, 60 s	Results
			kV	Number of tests ⁄ disruptive discharges	V	Disruptive discharges
All terminals of the main	Enclosure / mounting	Close	± 9.8	5 each/0	2200	0
connected together	plate	Open	± 9.8	5 each/0	2200	0
Each pole of the main	Other poles connected	Close	± 9.8	5 each/0	2200	0
Circolt	to enclosure	Open	± 9.8	5 each/0	2200	0
Line terminals connected together	Load terminals connected together	Open	± 12.3	5 each/0	2200	0

• Verification of creepage distances

The minimum creepage distance measured to Annex G is 54 mm. The required minimum creepage distance limit has been observed.

• Leakage current

The leakage current of max. 4.0 μ A measured, was less than the permissible value of 2 mA.

4.3 Making and breaking capacities

4.3.1 Test laboratory

Low-voltage test laboratory, test room 4

4.3.2 Normative document

IEC 60947-3: 2020, Sub-clause 9.3.4.4

4.3.3 Required test parameters

The test object was mounted, as specified by the manufacturer, in normal position of use. The terminals were connected with 4-m long, insulated single-core copper cables with a cross-section of 70 mm² per pole for TES-00/800 and with 120 mm² for TES-1/800.

The torque of the screws at the terminals was 15 Nm for TES-00/800 and 25 Nm for TES-1/800.

4.3.5 Test and measuring circuits

Figure 2: Circuit for the test of making and breaking capacities

Measuring point	Measured quantity	Measuring sensor				
1	Current L1	Shunt				
3	Current L2	Shunt				
5	Current L3	Shunt				
2	Voltage across pole L1	RC divider				
4	Voltage across pole L2	RC divider				
6	Voltage across pole L3	RC divider				
7	Test voltage	Voltage transformer				
Measuring instruments: Measuring points 1 - 6: BAKKER transient recorder with BE 256 A/D transducers Measuring point 7: Digital voltmeter						

Technical data of measuring circuits

4.3.6 Test results

4.3.6.1 TES-00/800

Date of test:	
Test requirement:	
Operating cycle:	
Connection of test object:	
Operating cycle: Connection of test object:	

06 August 2021 Test of making and breaking capacities AC-21B 5 x CO-t (t - dead time) - Power supply at the upper terminals - Load circuit at the lower terminals Top: 50 mm, sides: 20 mm New

Distance of metallic screen from test object: Condition of test object before test:

Test parameters:

Test No.			4213959	4213960	4213961	4213962	4213963
Operating cycle			1. CO-t-	2. CO-t-	3. CO-t-	4. CO-t-	5. CO
Dead time	S		30	30	30	30	-
Applied voltage	V		850	850	850	850	850
		L1	347	347	347	347	347
Prospective peak current	А	L2	345	345	345	345	345
		L3	349	349	349	349	349
		L1	245	245	245	245	245
Prospective test current r.m.s.	А	L2	241	241	241	241	241
		L3	247	247	247	247	247
	Ave	rage	244	244	244	244	244
Power factor $\cos \phi$			0.94	0.94	0.94	0.94	0.94
		L1	246	245	245	244	244
Breaking current	А	L2	244	244	243	243	243
		L3	248	247	247	247	246
		L1	490	492	491	492	492
Recovery voltage	V	L2	506	505	504	504	504
		L3	490	491	490	491	490
Average ph	nase-to-p	hase	858	859	857	859	858
		L1	13.7	14.3	14.3	14.2	14.1
Joule integral 10	³ A ² s	L2	13.6	14.0	13.9	13.9	13.9
		L3	13.7	14.6	14.5	14.4	14.3
Duration of current flow	ms		226	236	237	236	235
		L1	7.72	5.34	4.88	6.60	7.40
Arcing time	ms	L2	7.72	0.40	0.04	1.64	2.46
		L3	2.90	5.30	4.86	6.62	7.38
Notes			-	-	-	-	-
Evaluation			ОК	ОК	OK	OK	ОК

Evaluation:

OK - The test object was able to make and break properly.

Condition of test object after test:

Immediately after the test of making and breaking capacities, the switching device was capable of properly opening and closing during a no-load operation. The force required for opening measured after the test was 66 N and did not exceed the permissible maximum value of 400 N (one-hand operation, table 17 of IEC 60947-1).

SHEET 17

4.3.6.2 TES-1/800

Date of test:	06 August 2021
Test requirement:	Test of making and breaking capacities AC-21B
Operating cycle:	5 x CO-t (t - dead time)
Connection of test object:	- Power supply at the upper terminals
	- Load circuit at the lower terminals

Distance of metallic screen from test object: Condition of test object before test:

Top: 50 mm, sides: 20 mm New

Test parameters:

Test No.				4213965	4213966	4213967	4213968	4213969
Operating cycle				1. CO-t-	2. CO-t-	3. CO-t-	4. CO-t-	5. CO
Dead time		s		30	30	30	30	-
Applied voltage	١	V		850	850	850	850	850
			L1	543	543	543	543	543
Prospective peak current	,	A	L2	562	562	562	562	562
			L3	552	552	552	552	552
			L1	381	381	381	381	381
Prospective test current r.m.s.	,	A	L2	392	392	392	392	392
			L3	390	390	390	390	390
		Aver	age	388	388	388	388	388
Power factor $\cos \phi$				0.9	0.9	0.9	0.9	0.9
			L1	381	380	379	379	379
Breaking current	,	A	L2	392	392	390	390	390
			L3	390	389	385	388	388
			L1	485	483	485	483	485
Recovery voltage	١	V	L2	501	500	498	500	497
			L3	485	487	484	483	484
Average p	phase	e-to-ph	lase	849	849	847	846	846
			L1	32.3	31.0	27.1	28.9	37.0
Joule integral 1	0³ /	A ² s	L2	34.9	32.9	28.1	30.3	37.8
			L3	33.6	32.3	27.9	29.2	37.9
Duration of current flow	I	ms	•	221	214	186	196	265
			L1	6.88	13.7	26.6	0.980	3.14
Arcing time	I	ms	L2	6.92	18.7	21.6	9.50	2.36
			L3	2.02	18.7	26.3	4.54	3.14
Notes				-	-	-	-	-
Evaluation				ОК	ОК	ОК	ОК	ОК

Evaluation:

OK - The test object was able to make and break properly.

Condition of test object after test:

Immediately after the test of making and breaking capacities, the switching device was capable of properly opening and closing during a no-load operation. The force required for opening measured after the test was 121 N and did not exceed the permissible maximum value of 400 N (one-hand operation, table 17 of IEC 60947-1).

4.4 Dielectric verification

4.4.1 Test laboratory

Low-voltage test laboratory, test room 4

4.4.2 Normative document

IEC 60947-3: 2020, Sub-clause 9.3.4.5

4.4.3 Required test parameters

Test voltage:	1600 V (2 x U _e
Test frequency:	50 Hz

4.4.4 Test arrangement

The test object was disconnected and removed from the equipment for the switching tests.

4.4.5 Test results

Date of test: 10 August 2021

After the test of making and breaking capacities, an AC voltage withstand test was carried out at AC 1600 V.

The test voltage was applied:

- between all the terminals of the main circuit connected together and the enclosure with closed and opened contacts,
- between each pole of the main circuit and the other poles connected together and to the enclosure with closed and opened contacts.

During each test period of 60 s, no disruptive discharges occurred.

4.5 Leakage current

4.5.1 **Test laboratory**

Low-voltage test laboratory, test room 4

4.5.2 Normative document

IEC 60947-3: 2020, Sub-clause 9.3.4.6

4.5.3 **Required test parameters**

Test voltage: 880 V (1.1 x U_e) Test frequency: 50 Hz

4.5.4 Test arrangement

See Sub-clause 4.4.4, Sheet 18

4.5.5 Test results

Date of test: 10 August 2021

DRAFT ation only After the dielectric verification, the leakage current was measured across open contacts and between closed contacts and the enclosure at 110 % rated operational voltage.

The measured leakage current was 4.1 μ A for TES-00/800 and 2.9 μ A for TES-1/800 which is lower than the permissible value of 2 mA.

4.6 Temperature-rise verification

4.6.1 Test laboratory

Low-voltage test laboratory, test rooms 4 and 7

4.6.2 Normative document

IEC 60947-3: 2020, Sub-clause 9.3.4.7

4.6.3 Required test parameters

Test current TES-00/800:	160 A, three-phase
Test current TES-1/800:	250 A, three-phase
Test frequency:	50 Hz
4.6.4 Test arrangement	
See Sub-clause 4.1.4, Sheet 7	Orona
4.6.5 Test and measuring circu	its
See Sub-clause 4.1.5, Sheet 8	or

.....

.....

4.6.6 Test results

4.6.6.1 TES-00/800

The temperature-rise verification was carried out with THS NH00 fuse links (800V, 160A, gL/gG, 50kA, 12W).

Date of test:	09 August 2021
Test current:	160 A / 161 A / 161 A
Test frequency:	50 Hz

Condition of test object:	Prestressed	
Ambient air:	26.6 °C	

Meas.		Designation	Classification	Material	Final	Final temperature rise	Temperature-rise
Phase					measured	temperatore rise	in the permitted
					[℃]	[K]	[K]
	L1			_	85.4	58.8	
1	L2	Upper terminals	Terminal	Copper, silver-coated	96.0	69.4	80
	L3			Silver couled	84.6	58.0	
	L1				76.4	49.8	
2	L2	Lower terminals	Terminal	Copper, silver-coated	79.4	52.8	80
	L3			Sire could	69.3	42.7	
3	-	Manual operating means	Manual actuator	Insulating material	36.0	9.4	35
4	-	Enclosure on the front side, intended to be touched but not hand hold	Exposed part	Insulating material	63.4	36.8	50
5	-	Enclosure, not touched during normal operation	Exposed part	Insulating material	82.8	56.2	60

The final temperature rise measured did not exceed the permissible temperature-rise limits.

4.6.6.2 TES-1/800

The temperature-rise verification was carried out with THS NH1 fuse links (800V, 250A, gL/gG, 50kA, 23W).

Date of test:	09 August 2021
Test current:	253 A / 251 A / 252 A
Test frequency:	50 Hz

Condition of test object:

Ambient air:

Prestressed 26.4 °C

Me poi Ph	eas. nt⁄ ase	Designation	Classification	Material	Final temperature measured [℃]	Final temperature rise [K]	Temperature-rise limit permitted
1	L1 L2 L3	Upper terminals	Terminal	Copper, silver-coated	66.2 85.0 70.6	39,8 58.6 44.2	80
2	L1 L2 L3	Lower terminals	Terminal	Copper, silver-coated	53.4 72.2 59.4	27.0 45.8 33.0	80
3	-	Manual operating means	Manual actuator	Insulating material	31.1	4.7	35
4	-	Enclosure on the front side, intended to be touched but not hand hold	Exposed part	Insulating material	51.8	25.4	50
5	-	Enclosure, not touched during normal operation	Exposed part	Insulating material	48.5	22.1	60

The final temperature rise measured did not exceed the permissible temperature-rise limits.

4.7 Strength of actuator mechanism

4.7.1 Test laboratory

Low-voltage test laboratory, test room 7

4.7.2 Normative document

IEC 60947-3: 2020, Sub-clause 9.3.4.8

4.7.3 Required test parameters

Minimum operating force:	150 N	
Maximum operating force:	400 N	

Test performed:

One-hand operation

4.7.4 Test arrangement

The fixed and the moving contact parts of pole L3 were kept closed by bore and split-pin.

4.7.5 Test results

Date of test: 10 August 2021

The force F necessary for opening the test object was measured before the strength of the actuator test and is 52.3 N for TES-00/800 and 133.7 N for TES-1/800.

The actuator of TES-00/800 was subjected to the test force of 157 N (3 x F) according to IEC 60947-1, table 17 (one-hand operation). The force was applied without shock to the actuator in a direction to open the contacts for a period of 10 s.

The actuator of TES-1/800 was subjected to the maximum test force of 400 N according to IEC 60947-1, table 17 (one-hand operation). The force was applied without shock to the actuator in a direction to open the contacts for a period of 10 s.

After the test of strength of actuator mechanism no damage was found on the switch-disconnector. The actuator mechanism did not give "OFF" position when the contacts were held closed. The position indication complies with the requirements defined in IEC 60947-3, Sub-clause 9.2.6.

5. Photos

Photo 1: Test object TES-00/800 after the verification of making and breaking capacities

Photo 2: Test object TES-00/800 after the verification of making and breaking capacities

Photo 3: Test object TES-1/800 after the verification of making and breaking capacities

Photo 4: Test object TES-1/800 after the verification of making and breaking capacities

SHEET 26

Photo 5: Test object TES-00/800 before the verification of the strength of actuator mechanism

Photo 6: Test object TES-00/800 after the verification of the strength of actuator mechanism

Photo 7: Test object TES-1/800 after the verification of the strength of actuator mechanism

Photo 8: Test object TES-1/800 after the verification of the strength of actuator mechanism

Photo 9: Test object TES-00/800 during temperature-rise verification

Photo 10: Test object TES-1/800 during temperature-rise verification

For

6. Oscillograms

SHEET 33

7. Drawings

